

The multi-faceted use of the OAI-PMH in the LANL
Repository

Henry N. Jerez
hjerez@lanl.gov

Xiaoming Liu
liu_x@lanl.gov

Patrick Hochstenbach
hochsten@lanl.gov

Herbert Van de Sompel
herbertv@lanl.gov

Digital Library Research & Prototyping Team
Los Alamos National Laboratory, Research Library

Los Alamos, New Mexico, USA

ABSTRACT
This paper focuses on the multifaceted use of the OAI-PMH in a
repository architecture designed to store digital assets at the
Research Library of the Los Alamos National Laboratory
(LANL), and to make the stored assets available in a uniform way
to various downstream applications. In the architecture, the
MPEG-21 Digital Item Declaration Language is used as the
XML-based format to represent complex digital objects. Upon
ingestion, these objects are stored in a multitude of autonomous
OAI-PMH repositories. An OAI-PMH compliant Repository
Index keeps track of the creation and location of all those
repositories, whereas an Identifier Resolver keeps track of the
location of individual objects. An OAI-PMH Federator is
introduced as a single-point-of-access to downstream harvesters.
It hides the complexity of the environment to those harvesters,
and allows them to obtain transformations of stored objects.
While the proposed architecture is described in the context of the
LANL library, the paper will also touch on its more general
applicability.

Categories and Subject Descriptors
H.3.7 [Digital Libraries]: Standards; System issues

General Terms
Design, Standardization.

Keywords
Digital Libraries, OAI-PMH, interoperability, federation.

1. INTRODUCTION
When compared to most academic and research libraries, the
Research Library of the Los Alamos National Laboratory (LANL)
follows a rather unique strategy with respect to providing access
to electronic scholarly information. The general trend in
electronic library services is to have users access externally
hosted materials through third party services, federated through a

locally hosted Web Portal. In order to be self-supporting with
respect to mission-critical scholarly information, the LANL
library acquires or licenses a vast collection of digital scholarly
assets, hosts those assets locally, and makes them accessible
through locally developed user services. The locally hosted assets
include secondary data feeds from ISI, BIOSIS, Inspec, and
primary information feeds from major scholarly publishers such
as Elsevier, Wiley, IOP, APS, etc.
 At the time of writing the collection of locally hosted assets
amounts to approximately 8 Terabytes of raw materials. In
addition to that, the LANL library is actively investigating the
deployment of Institutional Repository capabilities to host locally
created materials such as technical reports, datasets, videotaped
presentations, etc. Also, research is underway to augment the
locally hosted collection with materials gathered by focused Web
crawling, and to include logs detailing the usage of repository
assets in the repository as assets in their own right [1,2]. Hosting,
archiving and making accessible such a vast and heterogeneous
collection of scholarly assets in a consistent and sustainable
manner is a challenge that touches on many areas of Digital
Library practice and research, including the identification of
assets, the expression of relationships between assets, the
representation of assets by means of complex object models, and
methods to ingest and access stored assets.
Over the last year, the Digital Library Research and Prototyping
Team of the LANL Research Library has worked on the design of
a LANL Repository architecture aimed at ingesting, storing, and
making accessible to downstream applications its ever growing
heterogeneous digital collection. Also, a working prototype of the
design has been implemented. While no claims are being made
that the LANL Repository design or implementation are of a
nature that merits a comparison with – say – the deliverables of
the DSpace [3] or Fedora [4] projects, the authors do feel that the
architecture has the following interesting properties that should be
attractive for repository-related projects beyond the realm of the
LANL Research Library:
a. The use of the MPEG-21 Digital Item Declaration Language

(DIDL) to represent complex objects, as described in [5].
b. The natively distributed nature of the architecture.
c. The use of a special technique – the XMLtape – to store and

make accessible static collections of complex objects.
d. The multi-faceted use of the OAI-PMH to access stored

content in incremental batches.
e. The use of NISO OpenURL to access stored content or

various disseminations thereof, as described in [6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
JCDL’04, June 7–11, 2004,Tucson,Az,USA.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

f. The dynamic binding of dissemination methods to stored
content, as described in [6].

This paper elaborates on properties (b), (c), (d) of the LANL
Repository architecture by describing its multi-faceted use of the
OAI-PMH [7]. Generally speaking, the OAI-PMH is used in the
architecture to enable downstream applications – such as indexing
engines of various types – to recurrently poll the LANL
Repository for added assets that are of interest to them, to harvest
them, and – in good OAI-PMH Service Provider tradition – to do
something meaningful with them. In order to achieve this, the
OAI-PMH is used at different levels in the architecture. This will
be shown in the remainder of this paper by describing the major
components used in the architecture, as well as their interactions.
A good insight in the OAI-PMH is required for an adequate
understanding of this paper. To improve calrity, terms from the
OAI-PMH are showed in another font.
Figure 1 introduces those major components. As can be seen, the
LANL Repository hosts a multitude of autonomous OAI-PMH
repositories, each of which stores complex digital objects
represented using an XML wrapper format. This aspect of the
LANL Repository will be discussed in Sections 2 and 3. The
Repository Index, detailed in Section 4, keeps track of the

creation of such autonomous OAI-PMH repositories as well as of
their location. The Repository Index itself is exposed as an OAI-
PMH repository in its own right. For each complex digital object
stored in the environment, the Identifier Resolver stores the
identifier of that object as well as the location of the OAI-PMH
repository in which it resides. The Identifier Resolver, described
in Section 5, is populated through OAI-PMH harvesting and can
be queried in a variety of ways, including the handle protocol.
The DIP engine, which works according to MPEG-21 principles,
is introduced to facilitate the delivery of various disseminations of
stored objects. The DIP engine is only briefly described in
Section 6; details are available in [5, 6]. Finally, the OAI-PMH
Federator, detailed in Section 6, exposes the whole LANL
Repository as a single OAI-PMH repository. It interacts with all
other components mainly using the OAI-PMH. The OAI-PMH
Federator hides the complexity of the environment to downstream
harvesters, and becomes their single point of access to harvest
from the LANL Repository. The OpenURL Gateway is described
in detail in [6]; it provides a front-end to the repository from
which various disseminations of individual objects contained in
the LANL Repository can be obtained using requests compliant
with the forthcoming NISO OpenURL standard [8].

DIDs

OAI-PMH request

OAI-PMH request

OAI-PMH request

DID

DIP Table

MPEG-21
DIP

Engine

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

DID

LANL

A&I Publisher

publisher

Repository
Index

TechReport

A&I

A&I

baseU
R

L(3)
baseU

R
L(2)

baseU
R

L(1)

baseU
R

L(1)
baseU

R
L(2)

baseU
R

L(3)
baseU

R
L(x)

Identifier
Resolver

DID

DID

DID

DID

DID

DID

FTXT

baseU
R

L(x)

Ingest

DID-id

baseURL(n) & DID-id A&I Publisher

O
p
e
n
U
R
L

G
atew

ay
O

AI-P
M

H
 Federator

OpenURL

OAI-PMH request

INDEX

Autonomous OAI-PMH repositories

transformed
content

OAI-PMH request

DID, METS,
SCORM, ...

Figure 1. LANL Repository Architecture

2. INGESTION INTO THE LANL
REPOSITORY
In many cases the delivered assets to be hosted in the LANL
Repository are ‘complex’ in the sense that they consist of multiple
individual datastreams that form a single logical unit. For
example, a scholarly article may be delivered as a bundle that
consists of metadata describing the article, the article itself in PDF
and ASCI format, and the references made in the article expressed
in XML. The complex nature of the assets led to an investigation
regarding existing approaches to represent complex digital objects
using XML wrappers, which resulted in the selection of the
MPEG-21 Digital Item Declaration Language (DIDL) [9] as the
sole way to store digital assets in the LANL Repository. The
actual use of DIDL in the LANL Repository, including the
dynamic manner in which dissemination methods are attached to
assets upon retrieval, is described in detail in [5,6].
Digital assets to be hosted by the LANL Repository can, in
principle, be obtained in a variety of ways including ftp, OAI-
PMH harvesting, Web crawling and delivery on physical media.
A prototype ingestion process has been developed that turns each
obtained asset into an autonomous XML document that wraps the
datastream(s) of which the asset consists. Such an XML
document is named a Digital Item Declaration (DID); all LANL
DIDs are compliant with the MPEG-21 DIDL specification. As
such, for example, the different datastreams of the previously
mentioned scholarly article will be contained in a single DID,
which will physically contain and/or reference the various
datastreams that make up the asset. The DID also contains
information added by the ingestion process, for example, aimed at
expressing relationships between contained datastreams, the
media type of datastreams, etc. [5].
For the purpose of this paper two data elements added to DIDs
during the ingestion process are of crucial importance:

• The DID-identifier: a globally unique identifier – a URI - for
the DID itself. The DID-identifier should not be confused
with the identifier of content contained in or referenced by a
DID. Those identifiers are named Content-identifiers.

• The DID-creationTime: the time of creation of the DID,
expressed as an ISO 8601 datetime [10] with seconds
granularity.

3. STORING DIDS IN MULTIPLE OAI-
PMH REPOSITORIES
Once a delivered asset has been turned into a DID by the
ingestion process, the DID is stored in an OAI-PMH repository.
Data assets at LANL are typically received in large batches, since
secondary or primary publishers that account for the bulk of the
data to be stored in the LANL Repository deliver weekly or
annual feeds. In those cases, an autonomous OAI-PMH
repository is created per delivered batch. As a result, many OAI-
PMH repositories exist in the LANL Repository, each of which
has the following characteristics:

• It has a unique, persistent baseURL, the http address
BaseURL(n)

• Contained records are DIDs only

• The identifier used by the OAI-PMH is the DID-
identifier

• The datestamp used by the OAI-PMH is the DID-
creationTime.

• The only supported metadata format is DIDL, with
metadataPrefix DIDL, defined by the MPEG-21 DIDL
XML Schema. Because mapping a DID that represents a
complex digital object to simple DC is quite an impossible
task, support of DC by these OAI-PMH repositories is rather
meaningless.

• The supported OAI-PMH harvesting granularity is at the
seconds-level

• Set structures may be supported, but to reduce complexity
this aspect will not be discussed in this paper.

As a result, each autonomous OAI-PMH repository can be
harvested using a datestamp-based strategy, as a means to
recurrently collect newly added DIDs from them.
Not only are new data assets at LANL typically received in
batches, they are also quite stable in the sense that delivery of an
update for an asset is rather rare. These ingestion properties have
led to the creation of a special-purpose OAI-PMH repository,
named the XMLtape. An XMLtape OAI-PMH repository is
created as follows:

• As described earlier, when a batch of assets is delivered,
each asset is turned into a DID.

• All those DIDs are concatenated into a single well-formed
and valid XML file; this XML file can easily contain
millions of DIDs.

• The XML file is then indexed using an approach inspired by
a technique described by Google creators Page and Brin
[11]: (1) the XML file is gzipped; (2) the gzipped file is
indexed to support the core OAI-PMH keys, identifier
and datestamp, which are respectively the DID-identifier
and the DID-creationTime. The indexes record the values of
these keys, and the byte-offset and byte-count in the gzipped
file of the DIDs with a corresponding value.

• Software has been developed that makes the gzipped file and
its corresponding index accessible through the OAI-PMH.

XMLtapes turn out to be a handy way to store large batches of
stable assets. As the technique is based on the common, multi-
platform gzip tool it provides guarantees for administration-less
continuity. The nature of the indexes guarantees fast access to
stored DIDs, and the simplicity of the components involved yields
a high uptime of the XMLtape OAI-PMH repositories. Because
of their XML format, XMLtapes can be validated using standard
XML tools, and provide a high compression ratio. DIDs in
XMLtapes are never updated. Rather, when an update for a
contained asset is delivered, a new DID is created and stored in
another OAI-PMH repository.

4. KEEPING TRACK OF AUTONOMOUS
OAI-PMH REPOSITORIES: THE
REPOSITORY INDEX
As has been shown, storing DIDs in a multitude of individual
OAI-PMH repositories is attractive due to the nature of the
ingestion properties at the LANL library. And, while updates can
be harvested from each autonomous OAI-PMH repository, the
question remains unanswered as to how harvesters operated by

downstream Service Providers - such as indexing engines - learn
about the existence, addition of, and location of all those
repositories. In order to provide this crucial intelligence, the
Repository Index is introduced.
The Repository Index contains an entry for each autonomous
OAI-PMH repository in the environment. Each entry contains the
following information per OAI-PMH repository:

• The repository-baseURL: the baseURL of an OAI-PMH
repository, which is a unique and persistent URI.

• The repository-creationTime: the time when the OAI-
PMH repository becomes harvestable, by becoming
visible through the Repository Index. This time is
expressed as an ISO 8601 datetime with seconds
granularity.

• Metadata pertaining to the creation of the OAI-PMH
repository, its contents, etc.

It cannot be overlooked that the first two information elements of
the Repository Index map directly to the notions of the
identifier and the datestamp of the OAI-PMH, respectively.
And, indeed, in the LANL Repository, the Repository Index is
exposed as an OAI-PMH repository in its own right, with the
following properties:

• It has a unique, persistent baseURL, the http address
BaseURL(Repo-Index).

• Contained records comply with a locally defined metadata
format, identified by metadataPrefix INDEX, which
facilitates the expression of the necessary metadata about
autonomous OAI-PMH repositories.

• The identifier used by the OAI-PMH is the repository-
baseURL, BaseURL(n).

• The datestamp used by the OAI-PMH is the repository-
creationTime. There are no updates to metadata contained in
the Repository Index, and hence this datestamp will never
change and always remain equal to the time the OAI-PMH
repository became available for harvesting.

• The supported OAI-PMH harvesting granularity is
seconds-level.

• Set structures may be supported, but to reduce complexity,
this aspect will not be discussed in this paper. Typically,
set structures would be used in the Repository Index to
broadly categorize the nature or content of autonomous OAI-
PMH repositories.

As a result of the introduction of the Repository Index, harvesters
operated by downstream applications – all of which are internal to
LANL – can use a datestamp-based harvesting strategy to gather
newly added DIDs from the LANL Repository. Also the
harvester contained in the OAI-PMH Federator, which is a special
type of downstream application described later, will interact with
the environment in the manner described here.
Presume that T1 and T2 are second-granularity datetimes, with
T2 > T1, and that a harvester wants to collect DIDs added to the
Repository since the last harvest, which was conducted at T1.
These are the steps involved:

• The harvester issues a ListIdentifiers request against
the Repository Index, using the until parameter with a

value of T2. In response, the harvester receives a list of
repository-baseURLs and associated repository-
creationTimes.

 [BaseURL(Repo-Index)?
 verb=ListIdentifiers&until=T2&

 metadataPrefix=INDEX]

• For each repository-baseURL that has a repository-
creationTime larger than T1, the harvester issues a
ListRecords request against the actual repository-
baseURL. Since OAI-PMH repositories that meet this
condition have become available for harvesting after the last
harvest - all DIDs need to be collected from it – the harvester
does not use the from argument in this request. It does,
however, use the until parameter with a value of T2.

[BaseURL(n)?

 verb=ListRecords&until=T2&metadataPrefix=DIDL]

• For each repository-baseURL that has a repository-
creationTime smaller than or equal to T1, the harvester
issues a ListRecords request against the actual repository-
baseURL. Since these repositories were already available
for harvesting at the time of the last harvest – only new or
updated DIDs need to be collected – the harvester issues a
ListRecords with a value of T1 for the from argument and
a value of T2 for the until argument.

[BaseURL(m)?

 verb=ListRecords&from=T1&until=T2&

 metadataPrefix=DIDL]

In order for these harvesting operations not to miss out on any
updates or additions made to this highly distributed and dynamic
environment, the following are crucial:

• Usage of the until parameter in the aforementioned
harvesting requests.

• Synchronization of the clocks on all machines operating the
autonomous OAI-PMH repositories and the Repository
Index. This can be achieved using the Network Time
Protocol [12].

• The content of the Repository Index must perfectly reflect
the collection of harvestable OAI-PMH repositories in the
environment. This tight synchronization of the Repository
Index and the collection of harvestable repositories can be
achieved in various ways. For example, the process of
populating the Repository Index can be integrated with that
part of the ingestion process where new OAI-PMH
repositories are created, i.e. the ingestion process can write
to the Repository Index. Alternatively, this can also be
achieved using the OAI-PMH. For example, in the file-
system based solution used by the LANL Repository, the
OAI-PMH could be used as follows. When a new OAI-PMH
repository is created, a special file containing the required
information about that repository is written to the file system
in which all OAI-PMH repositories reside. Using a tool
similar to the ‘OAI-PMH2 XML-file file-based OAI Data
Provider’ [13], this file system can be exposed as an OAI-
PMH repository that has file names as identifiers and
file-creation-dates – that become repository-creationTimes -
as datestamps. Whenever the Repository Index receives
the aforementioned ListIdentifiers request, it starts by

issuing a ListRecords request against this file-system-
based OAI-PMH repository to collect all BaseURL(n) that
are currently available. Next, the Repository Index is
updated according to the response. Finally, being certain
that its content matches the actual LANL Repository
situation, the Repository Index can respond to the
ListIdentifiers request it received from the downstream
harvester. This OAI-PMH-based approach has not yet been
tested in the LANL Repository effort.

5. A SPECIAL SERVICE PROVIDER: THE
IDENTIFIER RESOLVER
As harvesters working on behalf of Service Providers collect
DIDs from the LANL Repository, and as those Service Providers
build services with the collected information, identifiers contained
in the harvested DIDs become available in applications such as
search engines. As mentioned before, these identifiers can either
be DID-identifiers identifying the DIDs themselves, or Content-
identifiers identifying content contained in DIDs. Obviously it is
essential that, when such identifiers show up in downstream
applications, the corresponding content can be retrieved from the
Repository. For this purpose the Identifier Resolver is introduced
to the environment. The Identifier Resolver is a special-purpose
Service Provider that collects the information it requires from the
Repository through recurrent OAI-PMH harvesting. From the
harvested information, it only uses the DID-identifiers, the
Content-identifiers, and the baseURL of the OAI-PMH repository
in which these occur.
Table 1 illustrates the content of the Identifier Resolver. As can
be seen, Id-1 and Id-4 are DID-identifiers, and the corresponding
DIDs are located in the OAI-PMH repository with baseURL
BaseURL(3) and BaseURL(6), respectively. As described in
detail in [6] the Identifier Resolver also contains Content-
identifiers as well as the location of the different versions of the
corresponding content expressed as a combination of baseURL of
an OAI-PMH repository and the DID-identifier of the DID in
which the content resides. Since these Content-identifiers are not
important for the OAI-PMH functionality of the LANL
Repository described in this paper, they are not shown in Table 1.

Table1. Identifier Resolver Contents

DID-identifier OAI-PMH repository

Id-1 BaseURL(3)

Id-4 BaseURL(6)

The Identifier Resolver is accessible to applications in a number
of ways including the handle protocol [14], a SOAP-based
mechanism, and a C library. After consultation of the Identifier
Resolver, an application can use the OAI-PMH to retrieve the
DID with a specified DID-identfier. For example, if the object
with identifier Id-1 is requested, a look-up in the Identifier
Resolver will learn that it is located at BaseURL(3). From this
information, the application can conclude that the requested DID
can be obtained by issuing the OAI-PMH request:
[BaseURL(3)?

 verb=GetRecord&identifier=Id-1&

 metadataPrefix=DIDL]

6. EXPOSING MULTIPLE AUTONOMOUS
OAI-PMH REPOSITORIES AS A SINGLE
ONE: THE OAI-PMH FEDERATOR
A new component – the OAI-PMH Federator - is introduced in
the environment for the following reasons:

• As was described so far, harvesters – through the Repository
Index – need to be aware of the location of each autonomous
OAI-PMH repository in the environment in order to collect
DIDs. This is not optimal, as those harvesters are not really
interested in the autonomous repositories but rather in the
new DIDs irrespective of their location.

• The infrastructure presented so far is only capable of
disseminating DIDs as stored; the only supported
metadataPrefix is DIDL. One can imagine that – for
reasons of interoperability – the dissemination of stored
DIDs rendered into other complex object representations
such as METS [15], SCORM [16], IMS [17] would be
desirable. And it would, for example, clearly be attractive if,
in order to feed the Identifier Resolver, not the complete
DIDs would have to be disseminated, but only their bare
essentials as required by the Identifier Resolver. Rather than
supporting these kinds of transformations at the level of each
of the autonomous OAI-PMH repositories, a separate
component, shared by all repositories, is introduced in the
environment. This component, capable of disseminating and
transforming DIDs, or content contained in DIDs, is named a
Digital Item Processing engine and it operates according to
the MPEG-21 Digital Item Processing (DIP) specification
[18]. The functioning of the LANL DIP engine is described
in detail in [6], and will, in this paper, be illustrated by
means of a scenario.

The OAI-PMH Federator will relieve harvesters from the burden
of having to interact with all autonomous OAI-PMH repositories,
and having to understand about the Repository Index and the
Identifier Resolver, by exposing the whole environment as a
single OAI-PMH repository. As a matter of fact, the OAI-PMH
Federator becomes the single point of access to the LANL
Repository for harvesters, hiding the complexity of the LANL
Repository environment from them.
The OAI-PMH Federator accepts incoming OAI-PMH requests
from downstream harvesters, and contains logic to translate these
requests into appropriate requests to be issued against the
Repository Index, the Identifier Resolver and the autonomous
OAI-PMH repositories. Since many of the latter requests are
themselves OAI-PMH requests, the OAI-PMH Federator operates
its private OAI-PMH harvester. Logic built in to the OAI-PMH
Federator ensures that the responses received from the various
components of the LANL Repository it interacts with are
interpreted correctly, and, whenever appropriate, handed over to
downstream harvesters as valid OAI-PMH responses.
The OAI-PMH Federator is an OAI-PMH repository with the
following characteristics:

• It has a unique, persistent baseURL, the http address
BaseURL(Federator).

• The identifier used by the OAI-PMH is the DID-
identifier.

• The datestamp used by the OAI-PMH is the DID-
creationTime.

• DIDL is the natively supported metadata format, but,
through dynamic processing of DIDs by the DIP engine,
potentially many other metadata formats can be supported.
The term metadata format must be interpreted broadly, as the
metadataPrefix argument in harvesting requests issued
against the OAI-PMH Federator can be used to express
several types of transformations that can be applied to stored
DIDs:

• Transformations that map DIDL to another complex
object model such as METS. In this case, the value for
the metadataPrefix argument in harvesting requests
could be METS, and the METS XML Schema would
define the metadata format.

• Transformations that filter information from stored
DIDs, as is, for example, the case with harvesting of
only identifiers by the Identifier Resolver. In this case,
the metadata format will remain DIDL, but the nature of
the harvesting request will need to be further clarified
through the metadataPrefix , i.e. DIDL:identifiers.

• The supported granularity is seconds-level.

• In order to support harvesting from selected autonomous
OAI-PMH repositories, if this would be required, the OAI-
PMH Federator can expose an OAI-PMH set structure in
which the baseURL(n) of each autonomous repository is
presented as a setSpec.

The interaction of a downstream harvester with the LANL
Repository through the OAI-PMH Federator is illustrated by
detailing the manner in which the response to the following
harvesting requests is provided: ListMetadataFormats,
ListSets, GetRecord, ListIdentifiers.

6.1 ListMetadataFormats
[BaseURL(Federator)?

 verb=ListMetadataFormats
and
 BaseURL(Federator)?

 verb=ListMetadataFormats&identifier=Id-1
where Id-1 is a DID-identifier]
Because both types of transformation described earlier can be
applied to all DIDs, and because only DIDs are stored in the
LANL Repository, support of a given metadata format is a
Repository-wide property, that is not dependent on a specific DID
or DID-identifier. Therefore, a response to the
ListMetadataFormats verb – with or without identifier
argument - is straightforward for the OAI-PMH Federator to
create. The DIP engine holds a table – the DIP Table – that lists
all methods that can be applied to objects stored in the LANL
Repository depending on their nature, i.e. whether they are DIDs,
whether they are assets, what the media type of an asset is, etc.
The DIP Table has a section with multiple OAI-PMH-specific
entries, each of which lists a metadataPrefix value, the
associated XML Namespace, and a pointer to the method that can
be used to transform a stored DID to the format identified by the
metadataPrefix value. As a matter of fact, this section of the
DIP Table stores all relevant information on all transformations

that can be applied to DIDs, and this information directly
corresponds to the metadata formats that are supported by the
OAI-PMH Federator.

6.2 ListSets
[BaseURL(Federator)?verb=ListSets]

The ListSets response detailing a baseURL-based set structure
that reflects the baseURLs of autonomous OAI-PMH repositories,
can easily be generated by the OAI-PMH Federator by issuing a
ListIdentifiers request against the Repository Index
[BaseURL(Repo-Index)?
 verb=ListIdentifiers&metadataPrefix=INDEX]
 and by transforming the response to that request into a ListSets
response to the downstream harvester.

6.3 GetRecord
[BaseURL(Federator)?

 verb=GetRecord&identifier=Id-1&

 metadataPrefix=DIDL
and
 BaseURL(Federator)?

 verb=GetRecord&identifier=Id-1&

 metadataPrefix=abc

in which Id-1 is a DID-identifier]
These are the steps involved in generating the appropriate
GetRecord response:

• Via the DIP Table, the OAI-PMH Federator can determine
whether the requested metadataPrefix - DIDL or abc – is
supported. If yes, the process can continue, if not, a
cannotDisseminateFormat error response can be
generated.

• Through interaction with the Identifier Resolver, the OAI-
PMH Federator finds out about the location of the DID with
DID-identifier Id-1, namely BaseURL(3). If no entry for
Id-1 would exist in the Identifier Resolver, the OAI-PMH
Federator can generate an idDoesNotExist error response.

• The OAI-PMH Federator obtains the stored DID by issuing a
GetRecord request

[BaseURL(3)?

 verb=GetRecord&identifier=Id-1&

 metadataPrefix=DIDL].

• If the metadataPrefix requested in the original
GetRecord request was DIDL, no special actions need
to be undertaken.

• If the metadataPrefix requested in the original
GetRecord request was abc, the OAI-PMH Federator
calls the DIP engine to have it apply the transform that
– in the DIP Table – corresponds to abc.

• The OAI-PMH Federator embeds the record resulting from
the previous step in a correct OAI-PMH response. If a
baseURL-based set structure is exposed by the OAI-PMH
Federator, this includes inserting set membership
information in the headers of the responses .

6.4 ListIdentifiers
[BaseURL(Federator)?

verb=ListIdentifiers& from=T1&until=T2&

metadataPrefix=DIDL
 and
BaseURL(Federator)?

verb=ListIdentifiers&from=T1&until=T2&

metadataPrefix=abc
in which T1 and T2 are as explained in Section 4]
These are the steps involved in generating the appropriate
ListIdentifiers response:

• Via the DIP Table, the OAI-PMH Federator can determine
whether the requested metadataPrefix - DIDL or abc – is
supported. If yes, the process can continue, if not, a
cannotDisseminateFormat error response can be
generated.

• The OAI-PMH Federator conducts the different steps
detailed in Section 4. Since support of a given metadata
format is a Repository-wide attribute, the steps are identical
for all supported metadataPrefix values:

• Identification of the autonomous OAI-PMH repositories
that meet the harvesting criteria by interaction with the
Repository Index

 [BaseURL(Repo-Index)?

 verb=ListIdentifiers&until=T2&

 metadataPrefix=INDEX]

• For each OAI-PMH repository identified through
interaction with the Repository Index one of the
following actions is taken: (1) If the OAI-PMH
repository was created after the last harvest, collect all
DID-identifiers

 [BaseURL(n)?
verb=ListIdentifiers&until=T2&

metadataPrefix=DIDL];
(2) If the OAI-PMH repository already existed at the
last harvest, collect the DID-identifiers of added or
updated DIDs

 [BaseURL(n)?

verb=ListIdentifiers&from=T1&until=T2&

metadataPrefix=DIDL]

• The OAI-PMH Federator returns the responses to harvesting
requests issued against the individual OAI-PMH repositories
as valid OAI-PMH responses to the downstream harvester.
As was the case with the GetRecord response, this might
include editing the headers of the responses to insert set-
membership information. The following are important with
respect to this step in the process:

• It is – in theory – possible that the Repository Index
returns a noRecordsMatch error response. The OAI-
PMH Federator must return such a response to the
downstream harvester.

• It is possible that autonomous OAI-PMH repositories
respond with a noRecordsMatch error response. The

OAI-PMH Federator must not pass on such responses to
the downstream harvester but rather interpret them as a
command to start harvesting from the next autonomous
OAI-PMH repository that was returned by the
Repository Index. Only if no meaningful responses
have been received from any of the individual OAI-
PMH repositories must the OAI-PMH Federator itself
return a noRecordsMatch error response.

• Care must be taken to appropriately handle
resumptionTokens delivered by an individual OAI-
PMH repository. As a matter of fact, the OAI-PMH
Federator will need to adapt such resumptionToken
by adding the following information to it (1) the
baseURL of the autonomous OAI-PMH repository from
which the resumptionToken was received (2) the
requested metadataPrefix. Also, the OAI-PMH
Federator may need to create resumptionTokens of
its own, to make the transition between harvesting from
one autonomous OAI-PMH repository to the next
easier.

• If one of the autonomous OAI-PMH repositories to be
harvested from returns a badResumptionToken error
message, the OAI-PMH Federator must pass this on to
the downstream harvester. If one of the OAI-PMH
repositories fails to respond, the OAI-PMH Federator
must generate an appropriate HTTP error indicating this
‘internal error’. The HTTP status-code 503 ‘service
unavailable’ is suitable for that purpose. In both cases,
the responses indicate to the downstream harvester that
its ongoing harvest can not be completed successfully,
and that the intended harvest should be restarted at
some later time.

A ListIdentifiers request with a set argument that specifies
the baseURL of an autonomous OAI-PMH repository can be
obtained by first interacting with the Repository Index – using a
GetRecord request - to determine whether the specified
repository exists. Then, the harvesting request targeted at the
OAI-PMH Federator can be translated to a request targeted at an
individual OAI-PMH repository by using the value of the set
argument of the initial request as the baseURL for the translated
request. The exact harvesting request to be issued will depend on
the relationship between the time of the last harvest and the
creation time of the OAI-PMH repository to be harvested from, as
was explained earlier in this Section and in Section 4. For
example, if repository-creationTime(BaseURL(6)) > T1 then the
OAI-PMH Federator can translate the incoming request
[BaseURL(Federator)?

 verb=ListIdentifiers&from=T1&until=T2&

 metadataPrefix=DIDL&set=BaseURL(6)]
to
[BaseURL(6)?

 verb=ListIdentifiers&until=T2&

 metadataPrefix=DIDL].
 In this case, also set information needs to be added to a
resumptionToken when it is passed on to a downstream
harvester.

Through a process similar to the above, the response to a
ListIdentifiers request without a from and/or until
argument can be generated.
The process of responding to a ListRecords request is similar to
that of responding to a ListIdentifiers request. However, as
was the case with the GetRecord request, when a metadata
format other than DIDL is requested, the DIP engine will be
called for each DID received in the response from autonomous
OAI-PMH repositories. The ListRecords response delivered by
the OAI-PMH Federator will contain the requested transformation
of the stored DIDs.

7. DISCUSSION
Initial versions of each of the components of the described
architecture have been implemented, and a series of small-scale
experiments in which DIDs – or transformations thereof - were
harvested from the environment through the OAI-PMH Federator
were completed successfully. At the time of writing, a larger
scale test in which millions of DIDs will be ingested into multiple
autonomous OAI-PMH repositories is being prepared, and a
transition of the described architecture into production is expected
to happen in the next few months. By making the LANL
Repository harvestable through the OAI-PMH Federator, each
downstream application can use off-the-shelf OAI-PMH
harvesting software to collect added or updated materials. The
OAI-PMH Federator itself can be built around off-the-shelf OAI-
PMH harvesting software; the OCLC OAICat framework [19] has
been selected for that purpose. Also, off-the-shelf OAI-PMH
repository software can be used to deploy both the Repository
Index, and the multitude of autonomous OAI-PMH repositories.
Generally speaking, the multi-faceted use of the OAI-PMH in the
LANL Repository ensures that only a very limited set of
lightweight tools, most of which are available off-the-shelf, are
required to interact with the environment.
To reduce the complexity of the paper, the use of OAI-PMH sets
by the autonomous OAI-PMH repositories or the Repository
Index, and the impact thereof on the OAI-PMH Federator, has not
been discussed. However, their use is currently being actively
researched. Hence the question is not whether sets can be
supported at all, because the answer to that question is
affirmative. The question is rather for which purpose the set
structure will be used, and how exactly it will be implemented.
Since sets are a technique provided by the OAI-PMH to allow
for selective harvesting, it can be used to achieve various
optimizations in the proposed solution aimed at guaranteeing its
scalability. As was mentioned, XMLtapes are static and hence
never need to be harvested for updates after an initial harvest
gathered all contained DIDs. As such, many polls of autonomous
OAI-PMH repositories by the OAI-PMH Federator could be
avoided if the Repository Index would maintain a set structure
that reflects the static or dynamic nature of those repositories, and
if the OAI-PMH Federator would make use of this set-
information into in the logic that underlies its interaction with the
environment. Other optimizations can be imagined that would
allow downstream harvesters to only collect the type of DIDs they
are really interested in, rather than to have them collect all DIDs
and have them dispose of the ones that are not relevant to their
task. For example, a full-text indexing engine is really only
interested in DIDs containing textual materials, while a video
indexing engine only wants those that contain moving images.

This would suggest an optimization that could be achieved by
implementing a set structure supported throughout the LANL
Repository reflecting media types. This would also be attractive
for the purpose of general repository management and digital
preservation. Another potential set structure could be collection-
oriented, and would allow a downstream harvester to, for
example, only collect DIDs that contain Inspec data. Generally
speaking, it seems that the nature of the set structure to be
supported is closely related with the specific requirements of the
anticipated applications on whose behalf the downstream
harvesters operate. It also seems that sets supported by all
autonomous OAI-PMH repositories in the environment are of
particular interest for the purpose of optimizing harvests.
The simplicity of the tools used in the architecture, and their off-
the-shelf availability may make the proposed solution attractive
for institutions beyond LANL that share the need to store
collections of complex digital objects. As was described, care
must be taken of the appropriate time-synchronization of the
autonomous OAI-PMH repositories, the Repository Index and the
OAI-PMH Gateway in order to ensure that downstream harvesters
do not miss out on updates in the environment. Also, a high
uptime of the OAI-PMH repositories must be guaranteed in order
to avoid unsuccessful harvests. These boundary conditions of the
solution can straightforwardly be met in the controlled
environment of the repository of a single institution. Of special
interest to certain institutions may be the XMLtape, which is
particularly useful for archiving a collection of static objects in a
self-contained manner, and to make those objects accessible using
tools supported on most operating systems, and a protocol – the
OAI-PMH – that is straightforward to implement. As this yields
hassle-free operation and high uptimes – properties appreciated
by many - LANL has decided to make its XMLtape software
available to the public [20].
The protocol-based nature of the proposed solution, and its
modularity, may also make it attractive for the federation of
groups of OAI-PMH repositories distributed over the Web. For
example, such a federation could consist of Institutional
Repositories that operate various brands of Institutional
Repository software, use different document models, and yet have
the need to recurrently interchange contained objects. Also,
another federation can be imagined that groups trusted digital
repositories [21] that regularly need to interchange objects in
order to guarantee redundancy. Generally speaking, a federation
of community-based OAI-PMH repositories containing complex
digital objects can be imagined for which a Repository Index and
an OAI-PMH Federator are deployed. Records contained in those
repositories could be homogeneous across the federation with
each repository supporting, for example, DIDL. But the
federation could also be heterogeneous, with one repository
supporting DIDL, another METS, and yet another IMS. The
population of a Repository Index in this scenario would be
different than the one described in the context of the LANL
Repository but its OAI-PMH functionality would remain
identical. Again, an OAI-PMH Federator hides the complexity of
the multitude of repositories to harvesters, and through a
component similar to the DIP engine, it could support crosswalks
between the multiple complex object format(s) used by the
federation. Assuming that a crosswalk between each of those
formats is available, then the combination of a
ListMetadataFormats request against a repository in the

federation and a lookup of the resulting metadataPrefix in the
equivalent of the DIP Table suffice for the OAI-PMH Federator to
be able to respond to a harvest requesting objects in whichever
format supported in the federation. As a result, the OAI-PMH
Federator would operate as a ‘complex object format’ switch for
the federation. In such a distributed Web-based federation, the
the synchronicity requirement can be met using available network
tools, as was described for the LANL Repository. This would
obviously require an appropriate level of organization of the
federation. The same is true for guaranteeing a high uptime of the
OAI-PMH repositories in the federation.
The question of more general applicability of the proposed
architecture becomes harder to answer when loosely-structured or
unmanaged federations are considered. Consider, for example,
the collection of all public OAI-PMH repositories as a federation.
This is not a federation of OAI-PMH repositories that expose
complex objects, but rather one in which more regular metadata
formats – such as DC and MARCXML – are supported. This
does not really influence the nature of the architecture. In this
federation, an interesting parallel can be drawn between the
Repository Index and the registries operated by the OAI [22] and
UUIC [23], as the latter list the baseURLs of all repositories in
this loose federation. Also, the ERRoLs service [24] capable of
resolving oai-identifiers [25] in a sense resembles the Identifier
Resolver, although it uses business rules rather than data collected
from individual repositories to resolve identifiers. This suggests
that an OAI-PMH Federator might potentially be added to this
federation as a single point of access to all public OAI-PMH
repositories. However, since neither the synchronicity
requirement nor the high uptime of repositories seems
straightforward to implement in such a loosely-structured
federation, further research would be required to determine the
usability of the proposed solution in that realm. Clearly, such a
loosely-structured federation would require a flexible variation of
the proposed OAI-PMH Federator that relies on a schedule-based
scheme to achieve a form of pseudo-synchronicity. Meanwhile,
the aggregating approach, as proposed by Celestial [26], seems
more appropriate for such loosely-structured federations.
Celestial, an OAI-PMH aggregator, actually collects the records
contained in all repositories, stores them in its own environment,
and re-exposes them at a single baseURL. In contrast, the OAI-
PMH Federator merely acts as a gateway to the repositories,
collecting records from those repositories and immediately
passing them on to downstream harvesters, as such avoiding the
central storage space required by Celestial.
To be complete, it should be mentioned that, due to their lack of
support of DC, neither of the OAI-PMH repositories used in the
proposed architecture are compliant with the current version of
the OAI-PMH that mandates support of DC. As the described use
of the OAI-PMH seems appropriate, suitable and attractive for the
described problem domain, this seems to further fuel the
discussion [27] as to whether DC should indeed remain
mandatory.

8. CONCLUSION
This paper has focused on the multi-faceted use of the OAI-PMH
in the LANL repository architecture. Official and/or de-facto
standards are used throughout this architecture to store and make
accessible a vast collection of scholarly asset in a consistent and
sustainable way. These include MPEG-21 DIDL, MPEG-21 DIP,

NISO OpenURL, and the OAI-PMH. Other papers by the DL
Research and Prototyping Team are available that provide details
on the use of MPEG-21 DIDL as the format to represent complex
digital objects, and on the application of NISO OpenURL and
MPEG-21 DIP to request disseminations of selected objects from
the LANL Repository.
In essence, this paper has described an approach to uniformly
make a vast and, ever growing data collection available to various
downstream applications. Each of these applications focuses on
building accurate services on top of the data collection and
therefore must be able to remain permanently in sync with it. In
the proposed approach, this rather complex problem is
modularized through the introduction of several interacting
components - the individual OAI-PMH repositories, the
Repository Index, the Identifier Resolver and the OAI-PMH
Federator - each addressing a simpler sub-problem. For most of
the interactions between the components, the lightweight OAI-
PMH protocol plays a prominent role. This makes the proposed
approach attractive, as the OAI-PMH is a lightweight protocol for
which software tools are readily available. It may also make the
approach attractive beyond the LANL Research Library. A more
general applicability seems to be feasible, indeed, for OAI-PMH
repositories under control of a single institution, or for a well-
managed federation of OAI-PMH repositories. Further research
would be required to determine whether and how the solution
could be adapted to enable its deployment in loosely-structured
federations.

9. ACKNOWLEDGMENTS
The authors would like to thank their colleagues Luda Balakireva,
Jeroen Bekaert and Thorsten Schwander from the LANL DL
Research and Prototyping team for their contributions to the
reported work, and the LANL library director, Rick Luce, for his
ongoing support.

10. REFERENCES
[1] J. Bollen, R. Luce. Evaluation of Digital Library Impact and

User Communities by Analysis of Usage Patterns. D-Lib
Magazine June 2002 Volume 8 Number 6. http://dx.doi.org/
10.1045/june2002-bollen

[2] H. Van de Sompel, J. Young, and T. Hickey. Using the OAI-
PMH ... Differently. D-Lib Magazine, July/August 2003,
Volume 9 Number 7/8. http://dx.doi.org/10.1045/july2003-
young

[3] M. Smith et al. DSpace An Open Source Dynamic Digital
Repository. D-Lib Magazine.January 2003, Volume 9
Number 1. http://dx.doi.org/10.1045/january2003-smith

[4] T. Staples et al.The Fedora Project An Open-source Digital
Object Repository Management System. D-Lib Magazine
April 2003 Volume 9 Number 4.
http://dx.doi.org/10.1045/april2003-staples

[5] J. Bekaert, P. Hochstenbach, and H. Van de Sompel. Using
MPEG-21 DIDL to Represent Complex Digital Objects in
the Los Alamos National Laboratory Digital Library. D-Lib
Magazine, November 2003, Volume 9 Number 11.
http://dx.doi.org/10.1045/november2003-bekaert

[6] J. Bekaert, L. Balakireva , P. Hochstenbach, and Herbert Van
de Sompel. Using MPEG-21 DIP and NISO OpenURL for

the dynamic dissemination of Complex Digital Objects in the
Los Alamos National Laboratory Digital Library. D-Lib
Magazine, February 2004, Volume 10 Number 2.
http://dx.doi.org/10.1045/february2004-bekaert

[7] C. Lagoze, H. Van de Sompel, M. Nelson, and S. Warner.
The Open Archives Initiative Protocol for Metadata
Harvesting - Version 2.0, 2002
http://www.openarchives.org/OAI_protocol/openarchivespro
tocol.html

[8] NISO committee AX. ANSI/NISO Z39.88-2004. The
OpenURL Framework for Context-Sensitive Services.
November 2003
http://library.caltech.edu/openurl/StandardDocuments/Part1-
Ballot-20031111.pdf

[9] MPEG-21, Information Technology, Multimedia
Framework, Part 2: Digital Item Declaration, ISO/IEC
21000-2:2003, March 2003.

[10] ISO 8601:2000, Data elements and interchange formats --
Information interchange -- Representation of dates and times,
Technical committee TC 154, ICS 01.140.30,stage 60.60,
2000-12-21

[11] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. In Proceedings of the 7th
International World Wide Web Conference, Brisbane,
Australia, 1998.
http://citeseer.nj.nec.com/brin98anatomy.html

[12] D. Mills. Network Time Protocol RFC 2030.
http://www.eecis.udel.edu/~mills/database/rfc/rfc2030.txt

[13] Hussein Suleman.OAI-PMH2 XMLFile File-based Data
Provider. December 2002,
http://www.dlib.vt.edu/projects/OAI/software/xmlfile/xmlfil
e.html

[14] S. Sun, et al. Handle System Overview. Internet Engineering
Task Force (IETF) Request for Comments (RFC), RFC
3650, November 2003. http://hdl.handle.net/4263537/4069

[15] Metadata Encoding and Transmission Standard (METS),
http://www.loc.gov/standards/mets/

[16] The Sharable Content Object Reference Model (SCORM).
http://www.adlnet.org/index.cfm?fuseaction=scormabt

[17] IMS Global Learning Consortium, “IMS Content Packaging
XML Binding - version 1.1.2 - Final specification,” 2001.

[18] MPEG-21, Information Technology, Multimedia
Framework, Part 10: MPEG-21 Digital Item Processing,
ISO/IEC JTC1/SC29/WG11 N5855, Trondheim, July 2003.

[19] OAICat. http://www.oclc.org/research/software/oai/cat.htm
[20] Yet Another Repository (YAR). http://yar.sourceforge.net
[21] RLG-OCLC. Trusted Digital Repositories: Attributes and

Responsibilities.
http://www.rlg.org/longterm/repositories.pdf

[22] Open Archives Registry,
http://www.openarchives.org/Register/BrowseSites.pl

[23] Experimental OAI Registry at The University of Illinois at
Urbana Champaign http://gita.grainger.uiuc.edu/registry

[24] ERRoLs. http://www.oclc.org/research/projects/oairesolver/
[25] Van de Sompel, H., Lagoze, C., Nelson, M., and Warner, S.

Implementation Guidelines for the Open Archives Initiative
for Metadata Harvesting: Specification and XML Schema for
the OAI Identifier Format, 2002
http://www.openarchives.org/OAI/2.0/guidelines-oai-
identifier.htm

[26] Tim Brody et al. Digitometric Services for Open Archives
Environments. Proceedings of European Conference on
Digital Libraries 2003, pages pp. 207-220, Trondheim,
Norway.

[27] OAI-implementers mailing list, thread “Reconsidering
mandatory DC in OAI-PMH”.
http://www.openarchives.org/pipermail/oai-
implementers/2003-August/000945.html

